Jumat, 16 Januari 2015

Oksida Nitrogen (NO dan NO2) Kata Kunci: Dampak Pembakaran Bahan Bakar, Oksida Nitrogen (NO dan NO2) Gas nitrogen monoksida (NO) memiliki sifat tidak berwarna, yang pada konsentrasi tinggi juga dapat menimbulkan keracunan. Di samping itu, gas oksida nitrogen juga dapat menjadi penyebab hujan asam. Keberadaan gas nitrogen monoksida (NO) di udara disebabkan karena gas nitrogen ikut terbakar bersama dengan oksigen (O2), yang terjadi pada suhu tinggi. Reaksinya adalah: Pada saat kontak dengan udara, maka gas nitrogen monoksida (NO) akan membentuk gas NO2 dengan reaksi sebagai berikut Gas NO2 merupakan gas yang beracun, berwarna merah cokelat, dan berbau seperti asam nitrat yang sangat menyengat dan merangsang. Keberadaan gas NO2 lebih dari 1 ppm dapat menyebabkan terbentuknya zat yang bersifat karsinogen atau penyebab terjadinya kanker. Jika menghirup gas NO2 dalam kadar 20 ppm akan dapat menyebabkan kematian. Sebagai pencegahan maka di pabrik atau motor, bagian pembuangan asap ditambahkan katalis logam nikel yang berfungsi sebagai konverter. Prinsip kerjanya adalah mengubah gas buang yang mencemari menjadi gas yang tidak berbahaya bagi lingkungan maupun kesehatan manusia. Proses pengubahan tersebut dapat dilihat pada reaksi berikut. Oksida Belerang (SO2 dan SO3) Kata Kunci: Dampak Pembakaran Bahan Bakar, Oksida Belerang (SO2 dan SO3) Gas belerang dioksida (SO2) mempunyai sifat tidak berwarna, tetapi berbau sangat menyengat dan dapat menyesakkan napas meskipun dalam kadar rendah. Gas ini dihasilkan dari oksidasi atau pembakaran belerang yang terlarut dalam bahan bakar miyak bumi serta dari pembakaran belerang yang terkandung dalam bijih logam yang diproses pada industri pertambangan. Penyebab terbesar berlebihnya kadar oksida belerang di udara adalah pada pembakaran batu bara. Akibat yang ditimbulkan oleh berlebihnya oksida belerang memang tidak secara langsung dirasakan oleh manusia, akan tetapi menyebabkan terjadinya hujan asam. Proses terjadinya hujan asam dapat dijelaskan dengan reaksi berikut. 1. Pembentukan asam sulfit di udara lembap 2. Gas SO2 dapat bereaksi dengan oksigen di udara 3. Gas SO3 mudah larut dalam air, di udara lembap membentuk asam sulfat yang lebih berbahaya daripada SO2 dan H2SO3 Hujan yang banyak mengandung asam sulfat ini memiliki pH < 5, sehingga menyebabkan sangat korosif terhadap logam dan berbahaya bagi kesehatan. Di samping menyebabkan hujan asam, oksida belerang baik SO2 maupun SO3 yang terserap ke dalam alat pernapasan masuk ke paru-paru juga akan membentuk asam sulfit dan asam sulfat yang sangat berbahaya bagi kesehatan pernapasan, khususnya paru-paru. Karbon Dioksida (CO2) Kata Kunci: CO2, Dampak Pembakaran Bahan Bakar, karbon dioksida Sebagaimana gas CO, maka gas karbon dioksida juga mempunyai sifat tidak berwarna, tidak berasa, dan tidak merangsang. Gas CO2 merupakan hasil pembakaran sempurna bahan bakar minyak bumi maupun batu bara. Dengan semakin banyaknya jumlah kendaraan bermotor dan semakin banyaknya jumlah pabrik, berarti meningkat pula jumlah atau kadar CO2 di udara kita. Keberadaan CO2 yang berlebihan di udara memang tidak berakibat langsung pada manusia, sebagaimana gas CO. Akan tetapi berlebihnya kandungan CO2 menyebabkan sinar inframerah dari matahari diserap oleh bumi dan benda – benda di sekitarnya. Kelebihan sinar inframerah ini tidak dapat kembali ke atmosfer karena terhalang oleh lapisan CO2 yang ada di atmosfer. Akibatnya suhu di bumi menjadi semakin panas. Hal ini menyebabkan suhu di bumi, baik siang maupun malam hari tidak menunjukkan perbedaan yang berarti atau bahkan dapat dikatakan sama. Akibat yang ditimbulkan oleh berlebihnya kadar CO2 di udara ini dikenal sebagai efek rumah kaca atau green house effect. Untuk mengurangi jumlah CO2 di udara maka perlu dilakukan upaya – upaya, yaitu dengan penghijauan, menanam pohon, memperbanyak taman kota, serta pengelolaan hutan dengan baik. Pembakaran hutan menyebabkan pencemaran udara karena menghasilkan polutan CO2. Karbon Monoksida (CO) Kata Kunci: co, Dampak Pembakaran Bahan Bakar, karbon monoksida Gas karbon monoksida adalah gas yang tidak berwarna, tidak berbau, tidak berasa, dan tidak merangsang. Hal ini menyebabkan keberadaannya sulit dideteksi. Padahal gas ini sangat berbahaya bagi kesehatan karena pada kadar rendah dapat menimbulkan sesak napas dan pucat. Pada kadar yang lebih tinggi dapat menyebabkan pingsan dan pada kadar lebih dari 1.000 ppm dapat menimbulkan kematian. Gas CO ini berbahaya karena dapat membentuk senyawa dengan hemoglobin membentuk HbCO, dan ini merupakan racun bagi darah. Oleh karena yang diedarkan ke seluruh tubuh termasuk ke otak bukannya HbO, tetapi justru HbCO. Keberadaan HbCO ini disebabkan karena persenyawaan HbCO memang lebih kuat ikatannya dibandingkan dengan HbO. Hal ini disebabkan karena afinitas HbCO lebih kuat 250 kali dibandingkan dengan HbO. Akibatnya Hb sulit melepas CO, sehingga tubuh bahkan otak akan mengalami kekurangan oksigen. Kekurangan oksigen dalam darah inilah yang akan menyebabkan terjadinya sesak napas, pingsan, atau bahkan kematian. Sumber keberadaan gas CO ini adalah pembakaran yang tidak sempurna dari bahan bakar minyak bumi. Salah satunya adalah pembakaran bensin, di mana pada pembakaran yang terjadi di mesin motor, dapat menghasilkan pembakaran tidak sempurna dengan reaksi sebagai berikut. 2 C8H18(g) + 17 O2(g) –>16 CO(g) + 18 H2O(g) Sumber lain yang menyebabkan terjadinya gas CO, selain pembakarantidak sempurna bensin adalah pembakaran tidak sempurna yang terjadi pada proses industri, pembakaran sampah, pembakaran hutan, kapal terbang, dan lain-lain. Namun demikian, penyebab utama banyaknya gas CO di udara adalah pembakaran tidak sempurna dari bensin, yang mencapai 59%. Sekarang ini para ahli mencoba mengembangkan alat yang berfungsi untuk mengurangi banyaknya gas CO, dengan merancang alat yang disebut catalytic converter, yang berfungsi mengubah gas pencemar udara seperti CO dan NO menjadi gas-gas yang tidak berbahaya, dengan reaksi: Penggunaan Residu dalam Industri Petrokimia Kata Kunci: alkena-alkena, Aromatika, Bahan Dasar Petrokimia, Gas Sintetis, olefin, Penggunaan Residu dalam Industri Petrokimia, Syn-Gas Berbagai produk bahan yang dihasilkan dari produk petrokimia dewasa ini banyak ditemukan. Petrokimia adalah bahan-bahan atau produk yang dihasilkan dari minyak dan gas bumi. Bahan-bahan petrokimia tersebut dapat digolongkan ke dalam plastik, serat sintetis, karet sintetis, pestisida, detergen, pelarut, pupuk, berbagai jenis obat maupun vitamin. Bahan Dasar Petrokimia Terdapat tiga bahan dasar yang digunakan dalam industri petrokimia, yaitu olefin, aromatika, dan gas sintetis (syn-gas). Untuk memperoleh produk petrokimia dilakukan dengan tiga tahapan, yaitu: a. Mengubah minyak dan gas bumi menjadi bahan dasar petrokimia. b. Mengubah bahan dasar menjadi produk antara. c. Mengubah produk antara menjadi produk akhir. Olefin (alkena-alkena) Olefin merupakan bahan dasar petrokimia yang paling utama. Produksi olefin di seluruh dunia mencapai milyaran kg per tahun. Di antara olefin yang paling banyak diproduksi adalah etilena (etena), propilena (propena), dan butadiena. Beberapa produk petrokimia yang menggunakan bahan dasar etilena adalah: 1) Polietilena, merupakan plastik yang paling banyak diproduksi, plastik ini banyak digunakan sebagai kantong plastik dan plastic pembungkus (sampul). Di samping polietilena sebagai bahan dasar, plastik dari polietilena ini juga mengandung beberapa bahan tambahan, yaitu bahan pengisi, plasticer, dan pewarna. 2) PVC atau polivinilklorida, juga merupakan plastik yang digunakan pada pembuatan pipa pralon dan pelapis lantai. 3) Etanol, merupakan bahan yang sehari-hari dikenal dengan nama alkohol. Digunakan sebagai bahan bakar atau bahan antara untuk pembuatan produk lain, misalnya pembuatan asam asetat. 4) Etilena glikol atau glikol, digunakan sebagai bahan antibeku dalam radiator mobil di daerah beriklim dingin. Beberapa produk petrokimia yang menggunakan bahan dasar propilena adalah: 1) Polipropilena, digunakan sebagai karung plastik dan tali plastik. Bahan ini lebih kuat dari polietilena. 2) Gliserol, digunakan sebagai bahan kosmetika (pelembab), industry makanan, dan bahan untuk membuat peledak (nitrogliserin). 3) Isopropil alkohol, digunakan sebagai bahan-bahan produk petrokimia yang lain, misalnya membuat aseton. Beberapa produk petrokimia yang menggunakan bahan dasar butadiena adalah: 1) Karet sintetis 2) Nilon Aromatika Pada industri petrokimia, bahan aromatika yang terpenting adalah benzena, toluena, dan xilena. Beberapa produk petrokimia yang menggunakan bahan dasar benzena adalah: 1) Stirena, digunakan untuk membuat karet sintetis. 2) Kumena, digunakan untuk membuat fenol. 3) Sikloheksana, digunakan untuk membuat nilon. Beberapa produk petrokimia yang menggunakan bahan dasar toluena dan xilena adalah: 1) Bahan peledak, yaitu trinitrotoluena (TNT) 2) Asam tereftalat, merupakan bahan dasar pembuatan serat. Syn-Gas (Gas Sintetis) Gas sintetis ini merupakan campuran dari karbon monoksida (CO) dan hidrogen (H2). Beberapa produk petrokimia yang menggunakan bahan dasar gas sintetis adalah: 1) Amonia (NH3), yang dibuat dari gas nitrogen dan gas hidrogen. Pada industri petrokimia, gas nitrogen diperoleh dari udara sedangkan gas hidrogen diperoleh dari gas sintetis. 2) Urea (CO(NH2)2), dibuat dari amonia dan gas karbon dioksida. Selain sebagai pupuk, urea juga digunakan pada industri perekat, plastik, dan resin. 3) Metanol (CH3OH), dibuat dari gas sintetis melalui pemanasan pada suhu dan tekanan tinggi dengan bantuan katalis. Sebagian methanol digunakan dalam pembuatan formaldehida, dan sebagian lagi digunakan untuk membuat serat dan campuran bahan bakar. 4) Formaldehida (HCHO), dibuat dari metanol melalui oksidasi dengan bantuan katalis. Formaldehida yang dilarutkan dalam air dikenal dengan nama formalin, yang berfungsi sebagai pengawet specimen biologi. Sementara penggunaan lainnya adalah untuk membuat resin urea-formaldehida dan lem. Kualitas Bensin Kata Kunci: Kualitas Bensin Salah satu hasil pengolahan distilasi bertingkat minyak bumi adalah bensin, yang dihasilkan pada kisaran suhu 30 °C – 200 °C. Bensin yang dihasilkan dari distilasi bertingkat disebut bensin distilat langsung (straight run gasoline). Bensin merupakan campuran dari isomer-isomer heptana (C7H16) dan oktana (C8H18). Bensin biasa juga disebut dengan petrol atau gasolin. Sebenarnya fraksi bensin merupakan produk yang dihasilkan dalam jumlah yang sedikit. Namun demikian karena bensin merupakan salah satu bahan bakar yang paling banyak digunakan orang untuk bahan bakar kendaraan bermotor, maka dilakukan upaya untuk mendapatkan bensin dalam jumlah yang besar. Cara yang dilakukan adalah dengan proses cracking (pemutusan hidrokarbon yang rantainya panjang menjadi hidrokarbon rantai pendek). Minyak bumi dipanaskan sampai suhu 800 °C, sehingga rantai hidrokarbon yang kurang begitu dibutuhkan dapat dipecah menjadi rantai pendek, sesuai rantai pada fraksi bensin (Keenan, Kleinfelter, Wood, 1992). Mutu atau kualitas bensin ditentukan oleh persentase isooktana yang terkandung di dalamnya atau yang biasa disebut sebagai bilangan oktan. Dikatakan kualitas bensin ditentukan oleh isooktana (2,2,4-trimetilpentana), hal ini terkait dengan efisiensi oksidasi yang dilakukan oleh bensin terhadap mesin kendaraan. Efisiensi energi yang tinggi diperoleh dari bensin yang memiliki rantai karbon yang bercabang banyak. Adanya komponen bensin berantai lurus menghasilkan energi yang kurang efisien, artinya banyak energy yang terbuang sebagai panas bukan sebagai kerja mesin, dan hal ini menyebabkan terjadinya knocking atau ketukan pada mesin. Ketukan pada mesin ini menyebabkan mesin menjadi cepat rusak. Bensin premium memiliki bilangan oktan 82, sedangkan bensin super memiliki bilangan oktan 98. Untuk meningkatkan bilangan oktan bensin, ditambahkan satu zat yang disebut TEL (tetraetil lead) atau tetraetil timbal. Penambahan TEL dalam konsentrasi sampai 0,01% ke dalam bensin dapat menaikkan bilangan oktan, sehingga ketukan pada mesin dapat dikurangi. Namun demikian penggunaan TEL ini memberikan dampak yang tidak baik bagi kesehatan manusia. Hal ini disebabkan karena gas buang kendaraan bermotor yang bahan bakarnya mengandung TEL, menghasilkan partikel-partikel timbal. Partikel timbal yang terisap oleh manusia dalam kadar yang cukup tinggi, menyebabkan terganggunya enzim pertumbuhan. Akibatnya bagi anak-anak adalah berat badan yang berkurang disertai perkembangan sistem syaraf yang lambat. Pada orang dewasa, partikel timbal ini menyebabkan hilangnya selera makan, cepat lelah, dan rusaknya saluran pernapasan. Untuk itu sekarang sedang digalakkan penggunaan bensin tanpa timbal, yaitu dengan mengganti TEL dengan MTBE (metil tersier butil eter), yang memiliki fungsi sama untuk meningkatkan bilangan oktan, tetapi tidak melepaskan timbal di udara. Teknik Pengolahan Minyak Bumi Kata Kunci: Blending, Desalting, Distilasi, Fraksi Hidrokarbon yang Didapatkan dari Distilasi Bertingkat, polimerisasi, Reforming, Teknik Pengolahan Minyak Bumi, Treating Di Indonesia, sumber minyak bumi terdapat di daerah-daerah Aceh, Sumatra Utara, Riau, Irian Jaya, Kalimantan, dan sebagian ada di pulau Jawa, yaitu Cepu dan beberapa daerah lain. Biasanya kandungan minyak bumi ini ada pada 3 – 4 km di bawah permukaan tanah. Untuk itu proses pengambilannya dengan menggunakan sumur-sumur bor yang sengaja dibuat. Beberapa di antaranya karena sumber minyak bumi ada di dasar laut, maka pengeboran dilakukan di laut. Minyak mentah yang dihasilkan ditampung dalam kapal tanker atau dialirkan melalui pipa ke stasiun tangki atau kilang minyak. Minyak mentah atau yang biasa disebut dengan crude oil ini berbentuk cairan kental hitam dan berbau kurang sedap, yang selain mengandung kotoran, juga mengandung mineral-mineral yang larut dalam air. Minyak ini belum dapat digunakan untuk bahan bakar atau berbagai keperluan lainnya, tetapi harus melalui pengolahan terlebih dahulu. Minyak mentah ini mengandung sekitar 500 jenis hidrokarbon dengan jumlah atom karbon 1 – 50. Pada prinsipnya pengolahan minyak bumi dilakukan dengan dua langkah, yaitu desalting dan distilasi. A. Desalting Proses desalting merupakan proses penghilangan garam yang dilakukan dengan cara mencampurkan minyak mentah dengan air, tujuannya adalah untuk melarutkan zat-zat mineral yang larut dalam air. Pada proses ini juga ditambahkan asam dan basa dengan tujuan untuk menghilangkan senyawa-senyawa selain hidrokarbon. Setelah melalui proses desalting, maka selanjutnya minyak akan menjalani proses distilasi. B. Distilasi Minyak mentah yang telah melalui proses desalting kemudian diolah lebih lanjut dengan proses distilasi bertingkat, yaitu cara pemisahan campuran berdasar perbedaan titik didih. Fraksi-fraksi yang diperoleh dari proses distilasi bertingkat ini adalah campuran hidrokarbon yang mendidih pada interval (range) suhu tertentu. Proses distilasi bertingkat dan fraksi yang dihasilkan dari distilasi bertingkat tersebut dapat digambarkan sebagai berikut. Diagram menara fraksionasi (distilasi bertingkat) untuk penyulingan minyak bumi. Pandangan irisan menunjukkan bagaimana fasa uap dan cairan dijaga agar selalu kontak satu sama lain, sehingga pengembunan dan penyulingan berlangsung menyeluruh sepanjang kolom. Fraksi Hidrokarbon yang Didapatkan dari Distilasi Bertingkat Fraksi Jumlah Atom C Titik Didih Kegunaan Gas C1 – C5 -164 °C – 30 °C bahan bakar gas Eter petroleum C5 – C7 30 °C – 90 °C pelarut, binatu kimia Bensin C5- C12 30 °C – 200 °C bahan bakar motor Minyak tanah C12 – C16 175 °C – 275 °C minyak lampu, bahan bakar kompor Minyak gas, bakar, dan diesel C15 – C18 250 °C – 400 °C bahan bakar mesin diesel Minyak-minyak pelumas, gemuk, jeli petroleum C16 ke atas 350 °C ke atas pelumas Parafin (lilin) C20 ke atas meleleh 52 °C – 57 °C lilin gereja, pengendapan air bagi kain, korek api,dan pengawetan Ter residu aspal buatan Kokas petroleum residu bahan bakar, elektrode Fraksi-faksi yang didapatkan setelah proses distilasi selanjutnya diolah lebih lanjut dengan proses reforming, polimerisasi, treating, dan blending. 1. Reforming Reforming merupakan suatu cara pengubahan bentuk, yaitu dari rantai lurus menjadi bercabang. Proses ini digunakan untuk meningkatkan mutu bensin. 2. Polimerisasi Polimerisasi merupakan suatu cara penggabungan monomer (molekul molekul sederhana) menjadi molekul-molekul yang lebih kompleks. 3. Treating Treating merupakan proses penghilangan kotoran pada minyak bumi. 4. Blending Blending merupakan proses penambahan zat aditif.

0 komentar :

Posting Komentar